7 research outputs found

    Systematic Approaches towards the Development of Host-Directed Antiviral Therapeutics

    Get PDF
    Since the onset of antiviral therapy, viral resistance has compromised the clinical value of small-molecule drugs targeting pathogen components. As intracellular parasites, viruses complete their life cycle by hijacking a multitude of host-factors. Aiming at the latter rather than the pathogen directly, host-directed antiviral therapy has emerged as a concept to counteract evolution of viral resistance and develop broad-spectrum drug classes. This approach is propelled by bioinformatics analysis of genome-wide screens that greatly enhance insights into the complex network of host-pathogen interactions and generate a shortlist of potential gene targets from a multitude of candidates, thus setting the stage for a new era of rational identification of drug targets for host-directed antiviral therapies. With particular emphasis on human immunodeficiency virus and influenza virus, two major human pathogens, we review screens employed to elucidate host-pathogen interactions and discuss the state of database ontology approaches applicable to defining a therapeutic endpoint. The value of this strategy for drug discovery is evaluated, and perspectives for bioinformatics-driven hit identification are outlined

    Down-regulation of NOX2 activity in phagocytes mediated by ATM-kinase dependent phosphorylation

    Get PDF
    NADPH oxidases (NOX) have many biological roles, but their regulation to control production of potentially toxic ROS molecules remains unclear. A previously identified insertion sequence of 21 residues (called NIS) influences NOX activity, and its predicted flexibility makes it a good candidate for providing a dynamic switch controlling the NOX active site. We constructed NOX2 chimeras in which NIS had been deleted or exchanged with those from other NOXs (NIS1, 3 and 4). All contained functional heme and were expressed normally at the plasma membrane of differentiated PLB-985 cells. However, NOX2-ΔNIS and NOX2-NIS1 had neither NADPH-oxidase nor reductase activity and exhibited abnormal translocation of p47 and p67 to the phagosomal membrane. This suggested a functional role of NIS. Interestingly after activation, NOX2-NIS3 cells exhibited superoxide overproduction compared with wild-type cells. Paradoxically, the V of purified unstimulated NOX2-NIS3 was only one-third of that of WT-NOX2. We therefore hypothesized that post-translational events regulate NOX2 activity and differ between NOX2-NIS3 and WT-NOX2. We demonstrated that Ser486, a phosphorylation target of ataxia telangiectasia mutated kinase (ATM kinase) located in the NIS of NOX2 (NOX2-NIS), was phosphorylated in purified cytochrome b after stimulation with phorbol 12-myristate-13-acetate (PMA). Moreover, ATM kinase inhibition and a NOX2 Ser486Ala mutation enhanced NOX activity whereas a Ser486Glu mutation inhibited it. Thus, the absence of Ser486 in NIS3 could explain the superoxide overproduction in the NOX2-NIS3 mutant. These results suggest that PMA-stimulated NOX2-NIS phosphorylation by ATM kinase causes a dynamic switch that deactivates NOX2 activity. We hypothesize that this downregulation is defective in NOX2-NIS3 mutant because of the absence of Ser486

    Asymmetric synthesis of host-directed inhibitors of myxoviruses

    No full text
    High-throughput screening (HTS) previously identified benzimidazole 1 (JMN3-003) as a compound with broad antiviral activity against different influenza viruses and paramyxovirus strains. In pursuit of a lead compound from this series for development, we sought to increase both the potency and the aqueous solubility of 1. Lead optimization has achieved compounds with potent antiviral activity against a panel of myxovirus family members (EC50 values in the low nanomolar range) and much improved aqueous solubilities relative to that of 1. Additionally, we have devised a robust synthetic strategy for preparing 1 and congeners in an enantio-enriched fashion, which has allowed us to demonstrate that the (S)-enantiomers are generally 7- to 110-fold more potent than the corresponding (R)-isomers

    Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor

    No full text
    Activation of the Gαs-coupled EP2 receptor for prostaglandin E2 (PGE2) promotes cell survival in several models of tissue damage. To advance understanding of EP2 functions, we designed experiments to develop allosteric potentiators of this key prostaglandin receptor. Screens of 292,000 compounds identified 93 that at 20 μM (i) potentiated the cAMP response to a low concentration of PGE2 by > 50%; (ii) had no effect on EP4 or β2 adrenergic receptors, the cAMP assay itself, or the parent cell line; and (iii) increased the potency of PGE2 on EP2 receptors at least 3-fold. In aqueous solution, the active compounds are largely present as nanoparticles that appear to serve as active reservoirs for bioactive monomer. From 94 compounds synthesized or purchased, based on the modification of one hit compound, the most active increased the potency of PGE2 on EP2 receptors 4- to 5-fold at 10 to 20 μM and showed substantial neuroprotection in an excitotoxicity model. These small molecules represent previously undescribed allosteric modulators of a PGE2 receptor. Our results strongly reinforce the notion that activation of EP2 receptors by endogenous PGE2 released in a cell-injury setting is neuroprotective

    Synthesis and Metabolic Studies of Host-Directed Inhibitors for Antiviral Therapy

    No full text
    Targeting host cell factors required for virus replication provides an alternative to targeting pathogen components and represents a promising approach to develop broad-spectrum antiviral therapeutics. High-throughput screening (HTS) identified two classes of inhibitors (<b>2</b> and <b>3</b>) with broad-spectrum antiviral activity against ortho- and paramyxoviruses including influenza A virus (IAV), measles virus (MeV), respiratory syncytial virus (RSV), and human parainfluenza virus type 3 (HPIV3). Hit-to-lead optimization delivered inhibitor <b>28a</b>, with EC<sub>50</sub> values of 0.88 and 0.81 μM against IAV strain WSN and MeV strain Edmonston, respectively. It was also found that compound <b>28a</b> delivers good stability in human liver S9 fractions with a half-life of 165 min. These data establish <b>28a</b> as a promising lead for antiviral therapy through a host-directed mechanism
    corecore